7月6日,由中国科学技术信息研究所、科技部新一代人工智能发展研究中心联合相关研究机构编写的《中国AI for Science创新地图研究报告》(以下简称《报告》)在2023世界人工智能大会昇腾人工智能产业高峰论坛上发布。《报告》显示,我国AI for Science论文发表数量最高,正积极推动全球AI for Science发展。
什么是AI for Science?AI for Science,即人工智能驱动的科学研究,就是利用AI的技术和方法,去学习、模拟、预测和优化自然界和人类社会的各种现象和规律,从而推动科学发现和创新。AI for Science不仅可以帮助科学家解决已有的问题,也可以帮助科学家发现新的问题和方向。这将为科学研究带来新的范式和机遇。
“AI for Science日益表现出突破传统科学研究能力瓶颈的巨大潜力,正在成为全球科学研究新范式。”中国科学技术信息研究所党委书记、所长,科技部新一代人工智能发展研究中心主任赵志耘介绍,近年来,我国AI for Science领域紧跟世界前沿,研究热度高、能力提升快,形成良好发展态势。
AI for Science多路并进,中美欧引领全球蓬勃发展
《报告》以可视化形式从多结构类型融合的数据、多领域特点融合的基础软件、多学科融合的人才、多样化融合的算力等创新要素维度,对我国AI for Science发展进行深度剖析,为促进我国AI for Science创新发展提供客观观察。
2017年前后,全球科学家开始尝试将机器学习等人工智能技术用于求解科学问题。五年来,各学科不断加入,模型精度、泛化性逐渐提高,不同技术路径、不同应用场景的AI for Science成功应用不断涌现,深度融合领域知识的AI for Science基础软件也蓬勃发展,为各领域AI for Science研究人员提供了一大批简单易用的工具软件。
中美欧三地AI for Science发展成果情况
通过分析全球已发布的AI for Science成果发现,中国、欧洲和美国大幅领先,三地AI for Science论文发表量超过全球总数的80%,我国AI for Science论文发表数量最高。同时,国内外知名高校、大型科研机构和头部企业均十分重视AI for Science,国外的谷歌、英伟达、DeepMind,国内的华为、百度等机构都在积极推动全球AI for Science发展。
多项成果具有国际影响力,我国AI for Science发展迅速
多项成果具有国际影响力
《报告》指出,在政策指引下,我国AI for Science发展迅速,涌现出“MEGA-Protein”“鹏程·神农”“东方·御风”以及盘古天气等多项具有国际影响力的成果。PaddleScience、MindSpore Science等国产化AI for Science基础软件也日益成熟,为AI for Science研究提供了丰富的数据集、基础模型及专用化工具。
科学研究开放数据资源丰富
《报告》通过对国家数据中心等公开信息调研发现,我国已经积累了丰富的科学研究开放数据资源。从数据类型上看,开源数据以基础学科和调研数据为主;在学科分布上,气象、天文、高能物理等学科开源数据最为丰富。
一大批算法和基础软件涌现
《报告》指出,深势科技的DeePMD、华为的MindSpore Science,百度的PaddleScience等一大批AI for Science基础软件相继涌现,并在积极推动开源。但总体而言,国产框架原生的领域套件比例还需要进一步提高,开源影响与英伟达的Clara等国外领先AI for Science基础软件相比还存在明显差距。
中国AI for Science算法和基础软件相继涌现
初具人才规模且集中在北京、广东、江苏
《报告》对AI for Science论文作者进行统计分析发现,我国AI for Science人才已初具规模,除人工智能领域外,主要集中在生物医学、地球科学、环境科学等科研领域。从地域分布来看,北京、广东、江苏等三地AI for Science人才指数最高,山东、湖北、四川、辽宁和陕西等科教资源丰富的地区也聚集了较多AI for Science人才。
中国AI for Science人才要素地图
北、上、广、浙、苏算力基础设施占全国的90%
《报告》通过调研全国范围内的算力基础设施分布情况发现,我国算力建设聚集度高,北京、广东、浙江、上海和江苏近5年人工智能加速卡销售量约占全国的90%,中西部省份的算力资源还有待拓展。在广东、江苏等省份,以昇腾为基础的人工智能计算中心公共算力增长最为迅速,通过共享方式为AI for Science的发展提供了重要算力保障。
中国AI for Science算力要素地图
专业化场景应用为主,学科领域差异明显
《报告》对国内正在开展的80多项AI for Science研究的调查分析发现,生物医疗、材料化学等领域的AI for Science发展迅速,成果最多,其他领域AI for Science还处于起步阶段。从特征上看,我国AI for Science技术正在各科学研究领域实现专业化的单一场景应用,但还没有出现跨领域的通用AI for Science模型。在应用和落地方式上,提供服务平台和套件是当前主要落地方式,其他落地模式还有待探索。
我国AI for Science处于关键发展阶段,如何做?
赵志耘指出,人工智能在科学研究领域的应用潜力巨大,当前正处于突破性发展的关键窗口期,但同时也面临着要素供应、协作机制等诸多挑战。
论坛现场,赵志耘还给出了我国AI for Science发展建议:
持续强化AI for Science领域研发支持
有序推动科学研究数据开放共享
加快完善基础软硬件技术生态体系
统筹推进算力基础设施建设
大力培养多学科交叉复合型人才
深化拓展AI for Science领域国际合作
(来源:科技日报)