在这篇技术文章中,我们讨论VE-Trac™ IGBT和碳化硅(SiC)模块如何赋能更高的电池密度并提供更高效的转换过程,以延长电动车的续航能力,从而帮助克服消费者的担忧。
主驱逆变器是电动车的核心,连接电池和主驱电机。它们将直流电池电压转换为电机所需的交流驱动,功率水平通常为80千瓦至150多千瓦。电池电压基于电池组的大小,通常在400 V直流电压范围内,但800 V直流电压正越来越普遍,以显著减小电流,从而降低损耗。
虽然锂离子(Li-Ion)电池成本在过去三年中降低了40%,或在过去十年中降低了90%,但它仍是电动车中最高的成本项。降价的轨迹预计将持续到2025年左右,届时价格将趋于稳定。鉴于这项成本,当务之急是尽可能有效地利用每一焦耳的存储能量,以减小电池组的成本和尺寸。
这种电力驱动提供极高的扭矩和加速度。逆变器和电动马达组合的反应能力直接关系到车辆的“感知”,因而也关系到消费者的驾驶体验和满意度。
开关器件的作用
主驱逆变器通常含三个半桥元件,每个半桥元件由一对MOSFET或IGBT组成,称为上桥和下桥开关。每个电机相位都有一个半桥,总共有三个,由栅极驱动器控制每个开关器件。
图1:主驱逆变器概览
开关的主要作用是打开和关断来自高压电池的直流电压和电流,为推动车辆的电机提供交流驱动。这是个要求很高的应用,因为它工作在高电压、高电流和高工作温度条件,而800 V电池可提供超过200千瓦的功率。
基于400 V电池系统的主驱逆变器要求功率半导体器件的VDS额定值在650 V至750 V之间,而800 V方案将VDS额定值要求提高到1200 V。在一个典型的应用中,这些功率器件还必须处理持续时间长达30秒(s)的超过600 A的峰值交流电流,以及持续约1毫秒(ms)的最大交流电流1600 A。
此外,开关晶体管和用于该器件的栅极驱动器必须能够处理这些大的负载,同时使主驱逆变器保持高能效。IGBT一直是主驱逆变器应用的首选器件,因为它们可以处理高电压,快速开关,带来高能效的工作,并满足汽车行业具挑战性的成本目标。
开关和功率密度
现代汽车极为拥挤——至少含技术的空间是如此。这说明功率密度是个重要参数,动力总成的功率密度尤为重要。物理尺寸(和重量)必须最小化,因为任何重量都会导致车辆续航能力降低。除了元器件的物理尺寸外,设计的能效也是主要的驱动因素。能效越高,产生的热量就越少,逆变器的结构就越紧凑。
开关(无论是IGBT还是MOSFET)对产生热量的损耗有最重要的影响。较低的导通电阻(RDS(ON))值可减少静态损耗,而栅极电荷(Qg)的改进可减少动态或开关损耗,使系统的开关速度加快。如果开关速度更快,那么就可以大大减小磁铁等无源元件的尺寸,从而提高功率密度。
开关的最高工作温度也会影响功率密度,因为如果器件能在更高的温度下工作,需要的冷却就更少,从而进一步减少设计的尺寸和重量。
模块化方案增加功率密度
在许多主驱逆变器的设计中,关键器件通常是单独的分立封装,虽然这是个非常有效的方法,但它不一定能提供最紧凑或最高功率密度的设计。另一种方法是使用预配置的模块来构成主驱逆变器所需的半桥。安森美(onsemi)的VE-Trac功率集成模块(PIM)就是这样一种方案,它专用于汽车功能电子化应用,包括逆变器。
VE-Trac Dual电源模块在一个半桥架构中集成了一对1200 V超场截止(UFS)IGBT。这些器件采用了稳定可靠且经过验证的沟槽(Trench) UFS IGBT技术,提供高电流密度、稳定可靠的短路保护以及800 V电池应用所需的更高阻断电压。该智能IGBT集成了电流和温度传感器,使其具有独特的优势,并对过电流(OCP)和过温度等保护功能提供更快的反应时间,从而提供一个更稳定可靠的方案。
这些芯片被封装好,安装在具有4.2 kV(基本)绝缘能力的Al2O3覆铜基板(DBC substrate),两侧都有铜和冷却性能。没有线邦定的模块比含有线邦定的类似外壳模块预期寿命增加一倍。将该IGBT和一个二极管共同封装,可以减少功率损耗和实现软开关,从而提高整体能效。
VE-Trac Dual模块将裸芯片封装在一个小巧的尺寸中,更易于集成到紧凑的设计中。高效的工作、低损耗和双面水冷确保轻松实现热管理,同时持续工作在175°C允许向牵引电机提供更高的峰值功率。主驱逆变器的每一相通常需要一个VE-Trac Dual模块,其机械设计本身可用于多相应用,提供简单的可扩展性,包括将模块并联以在每个单相提供更多的功率。
虽然基于IGBT的VE-Trac模块足以满足大多数汽车应用的要求,但基于SiC MOSFET的增强版也可用于最高要求的应用。这款产品采用了最新的宽禁带(WBG)技术,进一步减小主驱逆变器设计的尺寸并提高能效。
总结
让电动车在两次充电之间行驶得更远是我们当前的一大技术挑战。由于政府要求,且人们期望改善环境,这些车辆将在未来几年内被迅速采用。如果减轻消费者的“续航里程焦虑”,电动车会更有吸引力,那么采用的速度会更快。实现这的最佳途径是提高能效,这不仅延长续航里程,还增加功率密度和提升可靠性。
(来源:安森美)
(来源:安森美)