氧化镓(β-Ga2O3)是超宽禁带半导体的典型代表,禁带宽度高达(~4.8 eV),临界击穿场强高达(~8 MV/cm),是研制高耐压、大功率和高效节能半导体器件的理想半导体材料之一,可实现高击穿、低功耗和低成本器件芯片三重优势,在电力传输转换、电动汽车、高铁等领域具有重大应用前景。与当前产业界火热的第三代半导体GaN和SiC相比,Ga2O3功率器件在相同耐压情况下具有更低的导通电阻,应用于电能转换领域将实现更低的功耗和更高的转换效率。因此,近年来,氧化镓半导体已成为半导体国际研究热点和大国技术竞争制高点。
2018年以来,在郝跃院士领导下,西安电子科技大学通过自主氧化镓生长MOCVD设备、高质量氧化镓外延材料、高压器件新结构与新工艺等一系列技术创新,实现了氧化镓功率二极管和功率晶体管性能的高速提升,如图1和2,取得了多项里程碑成果,使我国氧化镓功率器件研究水平进入国际前列。
图1 西安电子科技大学氧化镓功率二极管研究进展
图2 西安电子科技大学氧化镓功率晶体管研究进展
图3 西安电子科技大学氧化镓功率晶体管研究进展
由于p型掺杂困难,空穴迁移率低,氧化镓功率器件中载流子双极输运及其电导调制效应始终没有实现,这是制约氧化镓功率器件性能进一步提升的关键瓶颈。为此,本文构筑了一种新型p-NiO/n-Ga2O3异质型PN结二极管结构。一方面,通过将PN异质结、镁注入终端、高k/低k泊松终端场板等相复合,利用高温热退火抑制非故意掺杂,使器件峰值电场强度得到极大的削弱;为高耐压氧化镓器件发展开拓了新技术途径,实现了8.3 kV的超高耐压。另一方面,得益于低导带带阶PN异质结的设计,超宽禁带PN异质结功率二极管实现了较低的开启,正向偏置时,空穴势垒降低,p区空穴跃过PN异质结进入n区,当空穴浓度高于电子浓度后,诱导电子浓度上升,从而显著降低了器件导通电阻,随着正向电压的增加微分电阻持续降低,在氧化镓器件中实现了空穴超注入效应。研制的氧化镓功率二极管拥有超高耐压和极低电阻,功率优值P-FOM高达13.2 GW/cm2,是截止目前氧化镓半导体器件的最高值。
图4 (a)器件三维结构示意图,(b)不通器件结构在8.3 kV耐压时仿真所得电场图,(c)器件击穿图,(d)器件正向导通图,(e)超宽禁带半导体功率器件导通电阻-耐压对比图。