有机光伏器件的透明电极材料主要是氧化铟锡(ITO),而铟元素是稀有元素,因此,ITO的使用会大幅提高有机光伏器件的制造成本,严重阻碍有机光伏技术的市场化发展。目前常见的,用于替代ITO的透明导电材料有PEDOT:PSS、金属纳米线、掺杂金属氧化物等。然而,这些材料一般在近红外波段具有较强的吸收系数,因此,基于这些透明导电材料的有机光伏器件在近红外波段存在较高的量子效率损失。非刻意掺杂过的金属氧化物半导体材料,如溶胶凝胶法制备的氧化锌(ZnO)薄膜材料,一般在近红外波段具有较高的光学透过率,但是这类材料的导电率过低,因此,无法被用作有机光伏器件的透明电极薄膜。因此,开发性能更为优异的,可以用于替代有机光伏器件中的ITO的透明导电材料对于有机光伏器件市场化发展极为重要。
东华大学唐正课题组与苏黎世应用科技大学的Wolfgang Tress教授合作,通过多次沉积法及紫外光掺杂效应,大幅提高了溶胶凝胶法制备的ZnO薄膜的导电率(高至460 S cm-1),并成功将其用于构建有机光伏器件,实现了免ITO有机光伏器件性能的突破。
在该研究工作中,论文作者首先是通过显微光谱学表征手段,明确了溶胶凝胶法制备的ZnO薄膜在紫外光掺杂作用下的导电率提升源自ZnO晶体中的氧空位对光生空穴的捕获作用。随后,作者推断氧空位的形成局限于ZnO晶体的表界面处,因此,通过设计如图1所示的多次沉积工艺,制备多层ZnO薄膜,提升了ZnO薄膜中的氧空位浓度,在维持了ZnO的高透过率的前提下,提高了ZnO薄膜的紫外光掺杂效果,以及ZnO在光掺杂后的导电率(图2)。
最终,作者将多层ZnO用作透明电极构建了有机光伏器件。测试结果显示,得益于多层ZnO电极的高导电率以及高光学透过性,基于ZnO的有机光伏器件展现出了优异的、可媲美基于ITO的有机光伏器件的光电转换性能(图3)。此外,作者还将多层ZnO电极用于构建有机光探测器及发光二极管等其他光电器件,并实现了器件性能的突破。
综上,论文作者开发了一种基于溶液加工ZnO的、具有高导电率和高光学透过率的透明导电薄膜,明确了该薄膜材料的导电机制,并构建了基于该材料的有机光电器件,为提高免ITO有机光伏器件的性能提供了新的思路。该研究工作获东华大学、国家自然科学基金以及上海市科委的资助。
(来源:东华大学纤维材料改性国家重点实验室)